In the Linux kernel, the following vulnerability has been resolved:
NFSD: Protect against send buffer overflow in NFSv2 READ
Since before the git era, NFSD has conserved the number of pages
held by each nfsd thread by combining the RPC receive and send
buffers into a single array of pages. This works because there are
no cases where an operation needs a large RPC Call message and a
large RPC Reply at the same time.
Once an RPC Call has been received, svc_process() updates
svc_rqst::rq_res to describe the part of rq_pages that can be
used for constructing the Reply. This means that the send buffer
(rq_res) shrinks when the received RPC record containing the RPC
Call is large.
A client can force this shrinkage on TCP by sending a correctly-
formed RPC Call header contained in an RPC record that is
excessively large. The full maximum payload size cannot be
constructed in that case.
In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Fix error code path in acpi_ds_call_control_method()
A use-after-free in acpi_ps_parse_aml() after a failing invocaion of
acpi_ds_call_control_method() is reported by KASAN [1] and code
inspection reveals that next_walk_state pushed to the thread by
acpi_ds_create_walk_state() is freed on errors, but it is not popped
from the thread beforehand. Thus acpi_ds_get_current_walk_state()
called by acpi_ps_parse_aml() subsequently returns it as the new
walk state which is incorrect.
To address this, make acpi_ds_call_control_method() call
acpi_ds_pop_walk_state() to pop next_walk_state from the thread before
returning an error.
In the Linux kernel, the following vulnerability has been resolved:
USB: dwc3: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
Note, the root dentry for the debugfs directory for the device needs to
be saved so we don't have to keep looking it up, which required a bit
more refactoring to properly create and remove it when needed.
In the Linux kernel, the following vulnerability has been resolved:
USB: isp1362: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
In the Linux kernel, the following vulnerability has been resolved:
USB: sl811: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: lpc32xx_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: pxa25x_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: pxa27x_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
In the Linux kernel, the following vulnerability has been resolved:
trace/blktrace: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.