A vulnerability was found in systemd-coredump. This flaw allows an attacker to force a SUID process to crash and replace it with a non-SUID binary to access the original's privileged process coredump, allowing the attacker to read sensitive data, such as /etc/shadow content, loaded by the original process.
A SUID binary or process has a special type of permission, which allows the process to run with the file owner's permissions, regardless of the user executing the binary. This allows the process to access more restricted data than unprivileged users or processes would be able to. An attacker can leverage this flaw by forcing a SUID process to crash and force the Linux kernel to recycle the process PID before systemd-coredump can analyze the /proc/pid/auxv file. If the attacker wins the race condition, they gain access to the original's SUID process coredump file. They can read sensitive content loaded into memory by the original binary, affecting data confidentiality.
In the Linux kernel, the following vulnerability has been resolved:
qibfs: fix _another_ leak
failure to allocate inode => leaked dentry...
this one had been there since the initial merge; to be fair,
if we are that far OOM, the odds of failing at that particular
allocation are low...
In the Linux kernel, the following vulnerability has been resolved:
parisc: Fix double SIGFPE crash
Camm noticed that on parisc a SIGFPE exception will crash an application with
a second SIGFPE in the signal handler. Dave analyzed it, and it happens
because glibc uses a double-word floating-point store to atomically update
function descriptors. As a result of lazy binding, we hit a floating-point
store in fpe_func almost immediately.
When the T bit is set, an assist exception trap occurs when when the
co-processor encounters *any* floating-point instruction except for a double
store of register %fr0. The latter cancels all pending traps. Let's fix this
by clearing the Trap (T) bit in the FP status register before returning to the
signal handler in userspace.
The issue can be reproduced with this test program:
root@parisc:~# cat fpe.c
static void fpe_func(int sig, siginfo_t *i, void *v) {
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGFPE);
sigprocmask(SIG_UNBLOCK, &set, NULL);
printf("GOT signal %d with si_code %ld\n", sig, i->si_code);
}
int main() {
struct sigaction action = {
.sa_sigaction = fpe_func,
.sa_flags = SA_RESTART|SA_SIGINFO };
sigaction(SIGFPE, &action, 0);
feenableexcept(FE_OVERFLOW);
return printf("%lf\n",1.7976931348623158E308*1.7976931348623158E308);
}
root@parisc:~# gcc fpe.c -lm
root@parisc:~# ./a.out
Floating point exception
root@parisc:~# strace -f ./a.out
execve("./a.out", ["./a.out"], 0xf9ac7034 /* 20 vars */) = 0
getrlimit(RLIMIT_STACK, {rlim_cur=8192*1024, rlim_max=RLIM_INFINITY}) = 0
...
rt_sigaction(SIGFPE, {sa_handler=0x1110a, sa_mask=[], sa_flags=SA_RESTART|SA_SIGINFO}, NULL, 8) = 0
--- SIGFPE {si_signo=SIGFPE, si_code=FPE_FLTOVF, si_addr=0x1078f} ---
--- SIGFPE {si_signo=SIGFPE, si_code=FPE_FLTOVF, si_addr=0xf8f21237} ---
+++ killed by SIGFPE +++
Floating point exception
In the Linux kernel, the following vulnerability has been resolved:
arm64: bpf: Only mitigate cBPF programs loaded by unprivileged users
Support for eBPF programs loaded by unprivileged users is typically
disabled. This means only cBPF programs need to be mitigated for BHB.
In addition, only mitigate cBPF programs that were loaded by an
unprivileged user. Privileged users can also load the same program
via eBPF, making the mitigation pointless.
In the Linux kernel, the following vulnerability has been resolved:
smb: client: Avoid race in open_cached_dir with lease breaks
A pre-existing valid cfid returned from find_or_create_cached_dir might
race with a lease break, meaning open_cached_dir doesn't consider it
valid, and thinks it's newly-constructed. This leaks a dentry reference
if the allocation occurs before the queued lease break work runs.
Avoid the race by extending holding the cfid_list_lock across
find_or_create_cached_dir and when the result is checked.
In the Linux kernel, the following vulnerability has been resolved:
HID: pidff: Make sure to fetch pool before checking SIMULTANEOUS_MAX
As noted by Anssi some 20 years ago, pool report is sometimes messed up.
This worked fine on many devices but casued oops on VRS DirectForce PRO.
Here, we're making sure pool report is refetched before trying to access
any of it's fields. While loop was replaced with a for loop + exit
conditions were moved aroud to decrease the possibility of creating an
infinite loop scenario.
In the Linux kernel, the following vulnerability has been resolved:
arm64: bpf: Add BHB mitigation to the epilogue for cBPF programs
A malicious BPF program may manipulate the branch history to influence
what the hardware speculates will happen next.
On exit from a BPF program, emit the BHB mititgation sequence.
This is only applied for 'classic' cBPF programs that are loaded by
seccomp.
In the Linux kernel, the following vulnerability has been resolved:
sch_htb: make htb_qlen_notify() idempotent
htb_qlen_notify() always deactivates the HTB class and in fact could
trigger a warning if it is already deactivated. Therefore, it is not
idempotent and not friendly to its callers, like fq_codel_dequeue().
Let's make it idempotent to ease qdisc_tree_reduce_backlog() callers'
life.
In the Linux kernel, the following vulnerability has been resolved:
media: dw2102: Fix null-ptr-deref in dw2102_i2c_transfer()
In dw2102_i2c_transfer, msg is controlled by user. When msg[i].buf
is null and msg[i].len is zero, former checks on msg[i].buf would be
passed. Malicious data finally reach dw2102_i2c_transfer. If accessing
msg[i].buf[0] without sanity check, null ptr deref would happen.
We add check on msg[i].len to prevent crash.
Similar commit:
commit 950e252cb469
("[media] dw2102: limit messages to buffer size")
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btsdio: fix use after free bug in btsdio_remove due to race condition
In btsdio_probe, the data->work is bound with btsdio_work. It will be
started in btsdio_send_frame.
If the btsdio_remove runs with a unfinished work, there may be a race
condition that hdev is freed but used in btsdio_work. Fix it by
canceling the work before do cleanup in btsdio_remove.