In the Linux kernel, the following vulnerability has been resolved:
media: dvbdev: adopts refcnt to avoid UAF
dvb_unregister_device() is known that prone to use-after-free.
That is, the cleanup from dvb_unregister_device() releases the dvb_device
even if there are pointers stored in file->private_data still refer to it.
This patch adds a reference counter into struct dvb_device and delays its
deallocation until no pointer refers to the object.
In the Linux kernel, the following vulnerability has been resolved:
USB: uhci: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Avoid undefined behavior: applying zero offset to null pointer
ACPICA commit 770653e3ba67c30a629ca7d12e352d83c2541b1e
Before this change we see the following UBSAN stack trace in Fuchsia:
#0 0x000021e4213b3302 in acpi_ds_init_aml_walk(struct acpi_walk_state*, union acpi_parse_object*, struct acpi_namespace_node*, u8*, u32, struct acpi_evaluate_info*, u8) ../../third_party/acpica/source/components/dispatcher/dswstate.c:682 <platform-bus-x86.so>+0x233302
#1.2 0x000020d0f660777f in ubsan_get_stack_trace() compiler-rt/lib/ubsan/ubsan_diag.cpp:41 <libclang_rt.asan.so>+0x3d77f
#1.1 0x000020d0f660777f in maybe_print_stack_trace() compiler-rt/lib/ubsan/ubsan_diag.cpp:51 <libclang_rt.asan.so>+0x3d77f
#1 0x000020d0f660777f in ~scoped_report() compiler-rt/lib/ubsan/ubsan_diag.cpp:387 <libclang_rt.asan.so>+0x3d77f
#2 0x000020d0f660b96d in handlepointer_overflow_impl() compiler-rt/lib/ubsan/ubsan_handlers.cpp:809 <libclang_rt.asan.so>+0x4196d
#3 0x000020d0f660b50d in compiler-rt/lib/ubsan/ubsan_handlers.cpp:815 <libclang_rt.asan.so>+0x4150d
#4 0x000021e4213b3302 in acpi_ds_init_aml_walk(struct acpi_walk_state*, union acpi_parse_object*, struct acpi_namespace_node*, u8*, u32, struct acpi_evaluate_info*, u8) ../../third_party/acpica/source/components/dispatcher/dswstate.c:682 <platform-bus-x86.so>+0x233302
#5 0x000021e4213e2369 in acpi_ds_call_control_method(struct acpi_thread_state*, struct acpi_walk_state*, union acpi_parse_object*) ../../third_party/acpica/source/components/dispatcher/dsmethod.c:605 <platform-bus-x86.so>+0x262369
#6 0x000021e421437fac in acpi_ps_parse_aml(struct acpi_walk_state*) ../../third_party/acpica/source/components/parser/psparse.c:550 <platform-bus-x86.so>+0x2b7fac
#7 0x000021e4214464d2 in acpi_ps_execute_method(struct acpi_evaluate_info*) ../../third_party/acpica/source/components/parser/psxface.c:244 <platform-bus-x86.so>+0x2c64d2
#8 0x000021e4213aa052 in acpi_ns_evaluate(struct acpi_evaluate_info*) ../../third_party/acpica/source/components/namespace/nseval.c:250 <platform-bus-x86.so>+0x22a052
#9 0x000021e421413dd8 in acpi_ns_init_one_device(acpi_handle, u32, void*, void**) ../../third_party/acpica/source/components/namespace/nsinit.c:735 <platform-bus-x86.so>+0x293dd8
#10 0x000021e421429e98 in acpi_ns_walk_namespace(acpi_object_type, acpi_handle, u32, u32, acpi_walk_callback, acpi_walk_callback, void*, void**) ../../third_party/acpica/source/components/namespace/nswalk.c:298 <platform-bus-x86.so>+0x2a9e98
#11 0x000021e4214131ac in acpi_ns_initialize_devices(u32) ../../third_party/acpica/source/components/namespace/nsinit.c:268 <platform-bus-x86.so>+0x2931ac
#12 0x000021e42147c40d in acpi_initialize_objects(u32) ../../third_party/acpica/source/components/utilities/utxfinit.c:304 <platform-bus-x86.so>+0x2fc40d
#13 0x000021e42126d603 in acpi::acpi_impl::initialize_acpi(acpi::acpi_impl*) ../../src/devices/board/lib/acpi/acpi-impl.cc:224 <platform-bus-x86.so>+0xed603
Add a simple check that avoids incrementing a pointer by zero, but
otherwise behaves as before. Note that our findings are against ACPICA
20221020, but the same code exists on master.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: exit gracefully if reloc roots don't match
[BUG]
Syzbot reported a crash that an ASSERT() got triggered inside
prepare_to_merge().
[CAUSE]
The root cause of the triggered ASSERT() is we can have a race between
quota tree creation and relocation.
This leads us to create a duplicated quota tree in the
btrfs_read_fs_root() path, and since it's treated as fs tree, it would
have ROOT_SHAREABLE flag, causing us to create a reloc tree for it.
The bug itself is fixed by a dedicated patch for it, but this already
taught us the ASSERT() is not something straightforward for
developers.
[ENHANCEMENT]
Instead of using an ASSERT(), let's handle it gracefully and output
extra info about the mismatch reloc roots to help debug.
Also with the above ASSERT() removed, we can trigger ASSERT(0)s inside
merge_reloc_roots() later.
Also replace those ASSERT(0)s with WARN_ON()s.
In the Linux kernel, the following vulnerability has been resolved:
tty: pcn_uart: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
In the Linux kernel, the following vulnerability has been resolved:
serial: 8250: Reinit port->pm on port specific driver unbind
When we unbind a serial port hardware specific 8250 driver, the generic
serial8250 driver takes over the port. After that we see an oops about 10
seconds later. This can produce the following at least on some TI SoCs:
Unhandled fault: imprecise external abort (0x1406)
Internal error: : 1406 [#1] SMP ARM
Turns out that we may still have the serial port hardware specific driver
port->pm in use, and serial8250_pm() tries to call it after the port
specific driver is gone:
serial8250_pm [8250_base] from uart_change_pm+0x54/0x8c [serial_base]
uart_change_pm [serial_base] from uart_hangup+0x154/0x198 [serial_base]
uart_hangup [serial_base] from __tty_hangup.part.0+0x328/0x37c
__tty_hangup.part.0 from disassociate_ctty+0x154/0x20c
disassociate_ctty from do_exit+0x744/0xaac
do_exit from do_group_exit+0x40/0x8c
do_group_exit from __wake_up_parent+0x0/0x1c
Let's fix the issue by calling serial8250_set_defaults() in
serial8250_unregister_port(). This will set the port back to using
the serial8250 default functions, and sets the port->pm to point to
serial8250_pm.
In the Linux kernel, the following vulnerability has been resolved:
igb: Fix igb_down hung on surprise removal
In a setup where a Thunderbolt hub connects to Ethernet and a display
through USB Type-C, users may experience a hung task timeout when they
remove the cable between the PC and the Thunderbolt hub.
This is because the igb_down function is called multiple times when
the Thunderbolt hub is unplugged. For example, the igb_io_error_detected
triggers the first call, and the igb_remove triggers the second call.
The second call to igb_down will block at napi_synchronize.
Here's the call trace:
__schedule+0x3b0/0xddb
? __mod_timer+0x164/0x5d3
schedule+0x44/0xa8
schedule_timeout+0xb2/0x2a4
? run_local_timers+0x4e/0x4e
msleep+0x31/0x38
igb_down+0x12c/0x22a [igb 6615058754948bfde0bf01429257eb59f13030d4]
__igb_close+0x6f/0x9c [igb 6615058754948bfde0bf01429257eb59f13030d4]
igb_close+0x23/0x2b [igb 6615058754948bfde0bf01429257eb59f13030d4]
__dev_close_many+0x95/0xec
dev_close_many+0x6e/0x103
unregister_netdevice_many+0x105/0x5b1
unregister_netdevice_queue+0xc2/0x10d
unregister_netdev+0x1c/0x23
igb_remove+0xa7/0x11c [igb 6615058754948bfde0bf01429257eb59f13030d4]
pci_device_remove+0x3f/0x9c
device_release_driver_internal+0xfe/0x1b4
pci_stop_bus_device+0x5b/0x7f
pci_stop_bus_device+0x30/0x7f
pci_stop_bus_device+0x30/0x7f
pci_stop_and_remove_bus_device+0x12/0x19
pciehp_unconfigure_device+0x76/0xe9
pciehp_disable_slot+0x6e/0x131
pciehp_handle_presence_or_link_change+0x7a/0x3f7
pciehp_ist+0xbe/0x194
irq_thread_fn+0x22/0x4d
? irq_thread+0x1fd/0x1fd
irq_thread+0x17b/0x1fd
? irq_forced_thread_fn+0x5f/0x5f
kthread+0x142/0x153
? __irq_get_irqchip_state+0x46/0x46
? kthread_associate_blkcg+0x71/0x71
ret_from_fork+0x1f/0x30
In this case, igb_io_error_detected detaches the network interface
and requests a PCIE slot reset, however, the PCIE reset callback is
not being invoked and thus the Ethernet connection breaks down.
As the PCIE error in this case is a non-fatal one, requesting a
slot reset can be avoided.
This patch fixes the task hung issue and preserves Ethernet
connection by ignoring non-fatal PCIE errors.
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Pointer may be dereferenced
Klocwork tool reported pointer 'rport' returned from call to function
fc_bsg_to_rport() may be NULL and will be dereferenced.
Add a fix to validate rport before dereferencing.
In the Linux kernel, the following vulnerability has been resolved:
md/raid10: prevent soft lockup while flush writes
Currently, there is no limit for raid1/raid10 plugged bio. While flushing
writes, raid1 has cond_resched() while raid10 doesn't, and too many
writes can cause soft lockup.
Follow up soft lockup can be triggered easily with writeback test for
raid10 with ramdisks:
watchdog: BUG: soft lockup - CPU#10 stuck for 27s! [md0_raid10:1293]
Call Trace:
<TASK>
call_rcu+0x16/0x20
put_object+0x41/0x80
__delete_object+0x50/0x90
delete_object_full+0x2b/0x40
kmemleak_free+0x46/0xa0
slab_free_freelist_hook.constprop.0+0xed/0x1a0
kmem_cache_free+0xfd/0x300
mempool_free_slab+0x1f/0x30
mempool_free+0x3a/0x100
bio_free+0x59/0x80
bio_put+0xcf/0x2c0
free_r10bio+0xbf/0xf0
raid_end_bio_io+0x78/0xb0
one_write_done+0x8a/0xa0
raid10_end_write_request+0x1b4/0x430
bio_endio+0x175/0x320
brd_submit_bio+0x3b9/0x9b7 [brd]
__submit_bio+0x69/0xe0
submit_bio_noacct_nocheck+0x1e6/0x5a0
submit_bio_noacct+0x38c/0x7e0
flush_pending_writes+0xf0/0x240
raid10d+0xac/0x1ed0
Fix the problem by adding cond_resched() to raid10 like what raid1 did.
Note that unlimited plugged bio still need to be optimized, for example,
in the case of lots of dirty pages writeback, this will take lots of
memory and io will spend a long time in plug, hence io latency is bad.
In the Linux kernel, the following vulnerability has been resolved:
bpf: make sure skb->len != 0 when redirecting to a tunneling device
syzkaller managed to trigger another case where skb->len == 0
when we enter __dev_queue_xmit:
WARNING: CPU: 0 PID: 2470 at include/linux/skbuff.h:2576 skb_assert_len include/linux/skbuff.h:2576 [inline]
WARNING: CPU: 0 PID: 2470 at include/linux/skbuff.h:2576 __dev_queue_xmit+0x2069/0x35e0 net/core/dev.c:4295
Call Trace:
dev_queue_xmit+0x17/0x20 net/core/dev.c:4406
__bpf_tx_skb net/core/filter.c:2115 [inline]
__bpf_redirect_no_mac net/core/filter.c:2140 [inline]
__bpf_redirect+0x5fb/0xda0 net/core/filter.c:2163
____bpf_clone_redirect net/core/filter.c:2447 [inline]
bpf_clone_redirect+0x247/0x390 net/core/filter.c:2419
bpf_prog_48159a89cb4a9a16+0x59/0x5e
bpf_dispatcher_nop_func include/linux/bpf.h:897 [inline]
__bpf_prog_run include/linux/filter.h:596 [inline]
bpf_prog_run include/linux/filter.h:603 [inline]
bpf_test_run+0x46c/0x890 net/bpf/test_run.c:402
bpf_prog_test_run_skb+0xbdc/0x14c0 net/bpf/test_run.c:1170
bpf_prog_test_run+0x345/0x3c0 kernel/bpf/syscall.c:3648
__sys_bpf+0x43a/0x6c0 kernel/bpf/syscall.c:5005
__do_sys_bpf kernel/bpf/syscall.c:5091 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5089 [inline]
__x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5089
do_syscall_64+0x54/0x70 arch/x86/entry/common.c:48
entry_SYSCALL_64_after_hwframe+0x61/0xc6
The reproducer doesn't really reproduce outside of syzkaller
environment, so I'm taking a guess here. It looks like we
do generate correct ETH_HLEN-sized packet, but we redirect
the packet to the tunneling device. Before we do so, we
__skb_pull l2 header and arrive again at skb->len == 0.
Doesn't seem like we can do anything better than having
an explicit check after __skb_pull?