Improper Input Validation in the TLS 1.3 CKS extension parsing in wolfSSL 5.8.2 and earlier on multiple platforms allows a remote unauthenticated attacker to potentially cause a denial-of-service via a crafted ClientHello message with duplicate CKS extensions.
Improper input validation in the TLS 1.3 CertificateVerify signature algorithm negotiation in wolfSSL 5.8.2 and earlier on multiple platforms allows for downgrading the signature algorithm used. For example when a client sends ECDSA P521 as the supported signature algorithm the server previously could respond as ECDSA P256 being the accepted signature algorithm and the connection would continue with using ECDSA P256, if the client supports ECDSA P256.
Improper input validation in the TLS 1.3 KeyShareEntry parsing in wolfSSL v5.8.2 on multiple platforms allows a remote unauthenticated attacker to cause a denial-of-service by sending a crafted ClientHello message containing duplicate KeyShareEntry values for the same supported group, leading to excessive CPU and memory consumption during ClientHello processing.
Vulnerability in X25519 constant-time cryptographic implementations due to timing side channels introduced by compiler optimizations and CPU architecture limitations, specifically with the Xtensa-based ESP32 chips. If targeting Xtensa it is recommended to use the low memory implementations of X25519, which is now turned on as the default for Xtensa.
Integer Underflow Leads to Out-of-Bounds Access in XChaCha20-Poly1305 Decrypt. This issue is hit specifically with a call to the function wc_XChaCha20Poly1305_Decrypt() which is not used with TLS connections, only from direct calls from an application.
With TLS 1.3 pre-shared key (PSK) a malicious or faulty server could ignore the request for PFS (perfect forward secrecy) and the client would continue on with the connection using PSK without PFS. This happened when a server responded to a ClientHello containing psk_dhe_ke without a key_share extension. The re-use of an authenticated PSK connection that on the clients side unexpectedly did not have PFS, reduces the security of the connection.
In the OpenSSL compatibility layer implementation, the function RAND_poll() was not behaving as expected and leading to the potential for predictable values returned from RAND_bytes() after fork() is called. This can lead to weak or predictable random numbers generated in applications that are both using RAND_bytes() and doing fork() operations. This only affects applications explicitly calling RAND_bytes() after fork() and does not affect any internal TLS operations. Although RAND_bytes() documentation in OpenSSL calls out not being safe for use with fork() without first calling RAND_poll(), an additional code change was also made in wolfSSL to make RAND_bytes() behave similar to OpenSSL after a fork() call without calling RAND_poll(). Now the Hash-DRBG used gets reseeded after detecting running in a new process. If making use of RAND_bytes() and calling fork() we recommend updating to the latest version of wolfSSL. Thanks to Per Allansson from Appgate for the report.
In wolfSSL release 5.8.2 blinding support is turned on by default for Curve25519 in applicable builds. The blinding configure option is only for the base C implementation of Curve25519. It is not needed, or available with; ARM assembly builds, Intel assembly builds, and the small Curve25519 feature. While the side-channel attack on extracting a private key would be very difficult to execute in practice, enabling blinding provides an additional layer of protection for devices that may be more susceptible to physical access or side-channel observation.