In the Linux kernel, the following vulnerability has been resolved:
recordmcount: Fix memory leaks in the uwrite function
Common realloc mistake: 'file_append' nulled but not freed upon failure
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: Fix use-after-free
Fix potential use-after-free in l2cap_le_command_rej.
In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: Fix integer overflow in radeon_cs_parser_init
The type of size is unsigned, if size is 0x40000000, there will be an
integer overflow, size will be zero after size *= sizeof(uint32_t),
will cause uninitialized memory to be referenced later
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix null-ptr-deref in ext4_write_info
I caught a null-ptr-deref bug as follows:
==================================================================
KASAN: null-ptr-deref in range [0x0000000000000068-0x000000000000006f]
CPU: 1 PID: 1589 Comm: umount Not tainted 5.10.0-02219-dirty #339
RIP: 0010:ext4_write_info+0x53/0x1b0
[...]
Call Trace:
dquot_writeback_dquots+0x341/0x9a0
ext4_sync_fs+0x19e/0x800
__sync_filesystem+0x83/0x100
sync_filesystem+0x89/0xf0
generic_shutdown_super+0x79/0x3e0
kill_block_super+0xa1/0x110
deactivate_locked_super+0xac/0x130
deactivate_super+0xb6/0xd0
cleanup_mnt+0x289/0x400
__cleanup_mnt+0x16/0x20
task_work_run+0x11c/0x1c0
exit_to_user_mode_prepare+0x203/0x210
syscall_exit_to_user_mode+0x5b/0x3a0
do_syscall_64+0x59/0x70
entry_SYSCALL_64_after_hwframe+0x44/0xa9
==================================================================
Above issue may happen as follows:
-------------------------------------
exit_to_user_mode_prepare
task_work_run
__cleanup_mnt
cleanup_mnt
deactivate_super
deactivate_locked_super
kill_block_super
generic_shutdown_super
shrink_dcache_for_umount
dentry = sb->s_root
sb->s_root = NULL <--- Here set NULL
sync_filesystem
__sync_filesystem
sb->s_op->sync_fs > ext4_sync_fs
dquot_writeback_dquots
sb->dq_op->write_info > ext4_write_info
ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2)
d_inode(sb->s_root)
s_root->d_inode <--- Null pointer dereference
To solve this problem, we use ext4_journal_start_sb directly
to avoid s_root being used.
In the Linux kernel, the following vulnerability has been resolved:
cifs: fix oops during encryption
When running xfstests against Azure the following oops occurred on an
arm64 system
Unable to handle kernel write to read-only memory at virtual address
ffff0001221cf000
Mem abort info:
ESR = 0x9600004f
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x0f: level 3 permission fault
Data abort info:
ISV = 0, ISS = 0x0000004f
CM = 0, WnR = 1
swapper pgtable: 4k pages, 48-bit VAs, pgdp=00000000294f3000
[ffff0001221cf000] pgd=18000001ffff8003, p4d=18000001ffff8003,
pud=18000001ff82e003, pmd=18000001ff71d003, pte=00600001221cf787
Internal error: Oops: 9600004f [#1] PREEMPT SMP
...
pstate: 80000005 (Nzcv daif -PAN -UAO -TCO BTYPE=--)
pc : __memcpy+0x40/0x230
lr : scatterwalk_copychunks+0xe0/0x200
sp : ffff800014e92de0
x29: ffff800014e92de0 x28: ffff000114f9de80 x27: 0000000000000008
x26: 0000000000000008 x25: ffff800014e92e78 x24: 0000000000000008
x23: 0000000000000001 x22: 0000040000000000 x21: ffff000000000000
x20: 0000000000000001 x19: ffff0001037c4488 x18: 0000000000000014
x17: 235e1c0d6efa9661 x16: a435f9576b6edd6c x15: 0000000000000058
x14: 0000000000000001 x13: 0000000000000008 x12: ffff000114f2e590
x11: ffffffffffffffff x10: 0000040000000000 x9 : ffff8000105c3580
x8 : 2e9413b10000001a x7 : 534b4410fb86b005 x6 : 534b4410fb86b005
x5 : ffff0001221cf008 x4 : ffff0001037c4490 x3 : 0000000000000001
x2 : 0000000000000008 x1 : ffff0001037c4488 x0 : ffff0001221cf000
Call trace:
__memcpy+0x40/0x230
scatterwalk_map_and_copy+0x98/0x100
crypto_ccm_encrypt+0x150/0x180
crypto_aead_encrypt+0x2c/0x40
crypt_message+0x750/0x880
smb3_init_transform_rq+0x298/0x340
smb_send_rqst.part.11+0xd8/0x180
smb_send_rqst+0x3c/0x100
compound_send_recv+0x534/0xbc0
smb2_query_info_compound+0x32c/0x440
smb2_set_ea+0x438/0x4c0
cifs_xattr_set+0x5d4/0x7c0
This is because in scatterwalk_copychunks(), we attempted to write to
a buffer (@sign) that was allocated in the stack (vmalloc area) by
crypt_message() and thus accessing its remaining 8 (x2) bytes ended up
crossing a page boundary.
To simply fix it, we could just pass @sign kmalloc'd from
crypt_message() and then we're done. Luckily, we don't seem to pass
any other vmalloc'd buffers in smb_rqst::rq_iov...
Instead, let's map the correct pages and offsets from vmalloc buffers
as well in cifs_sg_set_buf() and then avoiding such oopses.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: fix "bad unlock balance" in l2cap_disconnect_rsp
conn->chan_lock isn't acquired before l2cap_get_chan_by_scid,
if l2cap_get_chan_by_scid returns NULL, then 'bad unlock balance'
is triggered.
In the Linux kernel, the following vulnerability has been resolved:
blk-mq: fix NULL dereference on q->elevator in blk_mq_elv_switch_none
After grabbing q->sysfs_lock, q->elevator may become NULL because of
elevator switch.
Fix the NULL dereference on q->elevator by checking it with lock.
In the Linux kernel, the following vulnerability has been resolved:
udf: Do not update file length for failed writes to inline files
When write to inline file fails (or happens only partly), we still
updated length of inline data as if the whole write succeeded. Fix the
update of length of inline data to happen only if the write succeeds.